EP matrices of adjointable operators on Hilbert C*-modules

نویسندگان

چکیده

In this paper, we investigate EP modular operator matrices on Hilbert C*-modules setting. The necessary and sufficient conditions for some to be are discussed, based the generalized Schur complement. These enable us generalize results of Meenakshi (1958) [11] block matrices.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Products Of EP Operators On Hilbert C*-Modules

In this paper, the special attention is given to the  product of two  modular operators, and when at least one of them is EP, some interesting results is made, so the equivalent conditions are presented  that imply  the product of operators is EP. Also, some conditions are provided, for which the reverse order law is hold. Furthermore, it is proved  that $P(RPQ)$ is idempotent, if $RPQ$†</...

متن کامل

extend numerical radius for adjointable operators on Hilbert C^* -modules

In this paper, a new definition of numerical radius for adjointable operators in Hilbert -module space will be introduced. We also give a new proof of numerical radius inequalities for Hilbert space operators.

متن کامل

Perturbation of Adjointable Mappings on Hilbert C-modules

Let X and Y be Hilbert C∗-modules over a C∗-algebra, and φ : X ×Y → [0,∞) be a function. A (not necessarily linear) mapping f : X → Y is called a φ-perturbed adjointable mapping if there exists a (not necessarily linear) mapping g : Y → X such that ‖〈f(x), y〉 − 〈x, g(y)〉‖ ≤ φ(x, y) (x ∈ X , y ∈ Y). In this paper, we investigate the generalized Hyers–Ulam–Rassias stability of adjointable mapping...

متن کامل

Stability of Adjointable Mappings in Hilbert C-Modules

The generalized Hyers–Ulam–Rassias stability of adjointable mappings on Hilbert C∗-modules are investigated. As a result, we get a solution for stability of the equation f(x)∗y = xg(y)∗ in the context of C∗-algebras. ∗2000 Mathematics Subject Classification. Primary 39B82, secondary 46L08, 47B48, 39B52 46L05, 16Wxx.

متن کامل

*-frames for operators on Hilbert modules

$K$-frames which are generalization of frames on Hilbert spaces‎, ‎were introduced‎ ‎to study atomic systems with respect to a bounded linear operator‎. ‎In this paper‎, ‎$*$-$K$-frames on Hilbert $C^*$-modules‎, ‎as a generalization of $K$-frames‎, ‎are introduced and some of their properties are obtained‎. ‎Then some relations‎ ‎between $*$-$K$-frames and $*$-atomic systems with respect to a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Filomat

سال: 2021

ISSN: ['2406-0933', '0354-5180']

DOI: https://doi.org/10.2298/fil2110287l